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Introduction

In this memo, the slew trajectory algorithm implemented in the NGST integrated system simulation
software program is described. This algorithm is used to generate the desired slew position, rate, and
acceleration profiles for commanding a feedback/feedforward control system.

The algorithm objectives are to minimize the effect of the control torque on the flexible body
motion and to minimize the maneuver time. With reaction wheels as control actuators, initial wheel
speeds as well as individual wheel torque and momentum limits become additional constraints in the
formulation. These constraints are necessary to ensure that unexpected saturation in reaction wheels
can not occur during the slew, since such saturation can lead to control failure in tracking
commanded motion, and can produce high frequency torque components capable of exciting
structural modes.

There are two steps in the development of the algorithm. The first step involves the basic trajectory
selection, which defines and parameterizes the functional form of the desired slew position, rate, and
acceleration profiles. This step while using a similar approach to that described in [1], extends it by
taking into account the reaction wheel limits in obtaining the desired motion profiles. The second
step optimizes the slew command parameters, such as maximum slew acceleration, defined in the
first step, for a given reaction wheel configuration, and torque and momentum limits, based on the
dynamic interaction between the spacecraft and reaction wheel motion.

In [1], a near optimal maneuver trajectory algorithm is given for the case with no reaction wheel
constraints. This algorithm specifies, in a parametric form, a smooth function that basically
approximates the sign function of a bang-bang law, which is a well-known form for minimum-time
controllers. The trajectory motion in this case is continuously maintained at maximum acceleration
over a long portion of the time during the slew period. The duration of this acceleration time portion
is selected in a trade-off between minimum maneuver time and the degree of smoothness in the
trajectory.

In the presence of reaction wheel momentum and torque limits, arbitrarily long and continuously
accelerating motions cannot be supported, implying that bang-bang controllers and the approach
given in [1] are not applicable. With limits imposed on the reaction wheel momentum, the best that
can be achieved in terms of minimizing maneuver time is to maintain spacecraft motion at its
maximum rate allowable by these limits, over as long a portion of the slew time as possible.

Maximizing this coasting time period means minimizing the time it takes to reach the maximum rate
at the start of the slew, and the time it takes to go back to zero rate at the end of the slew. This
requires that the maximum allowable acceleration and de-acceleration, which are bounded by the
reaction wheel torque limits and initial wheel momentum, be used in getting to and from the
maximum rate.

Thus, the general acceleration profile appropriate for this case starts with an impulse whose
amplitude is derived from reaction wheel torque limits, and whose direction is the direction of the
desired motion. Following the impulse, the profile remains at zero over the entire slew duration, and
ends with an impulse equal to the one applied at the start but in the opposite direction. The result in
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the rate profile is simply a rectangular curve, whose amplitude is derived from the reaction wheel
momentum limits.

In order to minimize the structural mode excitation, the selected acceleration profile is a smooth
version of the impulsive profile described above, and is chosen so that it and its first derivative are
continuous and given in low order polynomials.  The basic polynomials used in [1] are employed to
provide the smooth feature of the slew motion including those at the two end points.

Derivation

To achieve a smoothly varying torque, the desired acceleration profile generated by the slew
trajectory algorithm is selected to have the following functional form:

E.1 ( )cad t,tt,f
dt
de (t) ∆∆= ˆαα

Where α d is the maximum acceleration amplitude, $e  is a constant vector specifying the slew rotation
axis, and f(⋅) is a positive scalar time-function representing the desired spacecraft rate, parameterized
by (∆ ta, ∆ tc), and whose first order derivative is given as:
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It follows that the desired rate profile has the following form:

E.3    ( )cad tttfet ∆∆= ,, ̂ )( ωω

The profile of the slew angle ∆ θ can be directly obtained by integrating  E.3:

E.4 ( )∆ θ ∆ ∆( ) $ , ,' 'T e f t t t dtd a c

T

= ∫ω    
0
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Figure.1 shows the slew angle, rate, and acceleration profiles in the normalized form, with
acceleration and rate magnitudes of 1, and the time periods, ∆ ta =1 and ∆ tc, =2.
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Figure. 1
With function f(t) given above, it can be shown that in terms of the maximum acceleration
magnitude α d , the maximum rate magnitude ω d , and the slew angle ∆ θ , the time periods ∆ ta and ∆ tc
can be expressed as:



4

E.5

∆

∆ ∆

t

t

a
d

d

c
d

d

d

=

= −

ω
α

θ
ω

ω
α

2

and the total slew period is:

E.6      ∆ ∆ ∆T t ts c a= + 4

By imposing that a dead band zone in the acceleration profile, i.e. a zone where the time-derivative
of f(t) is zero,  be maintained in all slew commands, even if it is just a point between transition from
positive to negative acceleration, the maximum rate magnitude ω d must also satisfy the following
condition:

E.7 ω α
d

d≤  ∆ θ
2

which can be given in terms of ∆ ta  by using the first relation in E.5 for α d  , i.e.:

2∆ ∆ θta
d

≤
ω

and the second relation in E.5 leads to ∆ tc ≥  0, which implies the presence of the dead band zone in
the acceleration profile.

For later reference in the derivation of the maximum acceleration magnitude, given here are the
relations between α d , ω d , ∆ ta , and the slew angle ∆ θ(∆ ta) at time ∆ ta after the start of the slew,
when the desired acceleration profile reaches its positive maximum amplitude α d , and the desired
rate profile reaches half of its maximum value ω d:
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Derivation of the maximum rate magnitude

The basic equation describing the system momentum of the spacecraft and reaction wheels in the
inertial frame is:
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E.9 ( )H R t A h t I tT
w
b

w s0 = +( ) ( ) ( )ω

Where hw is the wheel momentum vector in wheel frame, and b
wA represents the constant

transformation from the wheel frame to the spacecraft frame. In a four-wheel configuration, hw is a
4-component vector, and b

wA  is a 3×4 matrix whose columns are reaction wheel rotational axes
given in the spacecraft frame and can be obtained directly from the reaction wheel configuration.
The left inverse of this matrix, denoted by w

bÂ , is a 4×3 matrix and typically given to minimize the
wheel speed magnitude. H0 and Is are, respectively, the initial system momentum in the inertial
frame, and the system inertia matrix in the spacecraft frame. H0 is assumed here to be a constant
vector, i.e. there is no external torque, and consists only of wheel momentum. R(t) is the direction
cosine matrix representing the transformation from the inertial frame to the spacecraft frame
corresponding to the desired rate profile ω (t).

Using the minimum mean squared solution, w
bÂ , for the inverse of b

wA , the wheel momentum vector
of minimum magnitude given in the reaction wheel frame, as a function of the initial system
momentum and the desired motion profile can be written as:

E.10    ( )h A R t H I tw b
w

s= −$ ( ) ( )0 ω

For a redundant wheel configuration, where there are more than 3 wheels in operation for attitude
control, if the null vector in the wheel frame is non-zero initially, then it must be added to E.10 and
must be carried in all the subsequent steps in computing the maximum rate magnitude.

With E.3, E.10 can be expressed in terms of slew parameters as:

E.11 ( )h A R t H I e f tw b
w

s d= −$ ( ) $ ( )0 ω

Let ±hlim and ±τ lim , hlim >0 and τ lim >0, denote the momentum limits and torque limits, respectively,
of each reaction wheel. These limits correspond to the four corners of a rectangular torque-speed
curve. This is a simplified version of a more typical torque-speed curve, which has regions of
decreasing torque as the wheel nears saturation speeds. Although it is a straightforward extension,
only the rectangular torque-speed curve is considered here.

The momentum limits when applied to a reaction wheel leads to the following inequality:

E.12 ( ) ( )− ≤ = − ≤h h A R t H I e f t hwi b
w

i s dlim lim
$ ( ) $ ( )    0 ω

Where the index i indicates the ith wheel, and ( w
bÂ )i denotes the ith row of the body-to-wheel

transformation matrix. E.12 leads to the following upper and lower bounds of the spacecraft rate
component along the ith wheel axis, due to the momentum limits of the ith wheel:
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E.13   ( ) ( ) ( )− + ≤ ≤ +h A R t H A I e f t h A R t Hb
w

i b
w
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w

ilim lim
$ ( ) $ $ ( ) $ ( )        0 0ω

Global bounds over the slew period can be obtained by taking the appropriate maximum and
minimum values of the time-dependent terms over the period, i.e.

E.14 ( ){ } ( ) ( ){ }− + ≤ ≤ +
∈ ∈

h A R t H A I e f t h A R t H
T b

w

i b
w

i s d T b
w

is s
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$ ( ) $ $ ( ) $ ( )Max     Min
t t∆ ∆0 0ω

The expression inside the minimum and maximum operators over the slew time period represents
the component of the system momentum that the ith wheel must be able to carry during the slew. As
the spacecraft rotates, there are for each wheel two attitudes at which the system momentum on the
wheel are maximum and minimum, which occur when the spacecraft frame is closest and farthest
from the wheel’s rotational axis. In addition the initial and final slew attitudes may represent extreme
points. For the four wheel case, there are 10 of these rotation angles, and the exact solutions of these
angles can be obtained since R(⋅) can be expressed in terms of position without being explicitly
dependent on time.

The computation of these attitudes are simplified by considering a coordinate frame, referred to as
the slew frame in which the z-axis coincides with the slew axis, $e , and the x axis is defined such that
the initial system momentum H0 is in the x-z plane. In this frame, the H0  describes a cone about the
z axis as the slew progresses, and for a given wheel rotational axis vector, the minimum and
maximum functions of E.14 can be computed straightforwardly. They can be shown to correspond
to having H0 at either the end points or lying in the plane spanned by the z-axis and the ith wheel’s
rotational axis.

Since f(t) is a positive function with the two end points at zero value, the upper and lower bounds on
the body rate given in E.14 must have one bound positive and the other negative. Thus, the
maximum rate amplitude based on the ith wheel’s momentum limit, denoted by ω d i , is simply the
larger of the two bounds (i.e. the positive bound), i.e.:
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Also, the condition for a valid command slew is that the bounds defined in E.14 must have opposite
signs. This assures that the component of the system momentum on a reaction wheel cannot exceed
hlim during the slew.

The sign of the denominator in E.15 plays a very important role in determining which of the two
bounds is the maximum rate amplitude, as it indicates the direction in which that wheel must be
rotated to achieve the desired spacecraft motion in the absence of the initial momentum. In general,
it has the same sign as that of the wheel momentum limit that will be reached during the slew. In the
case where this quantity is identically zero for the ith wheel, there is no contribution from this
reaction wheel to the slew and thus, it can be removed from the computation of the slew maximum
rate and acceleration magnitudes.
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The maximum rate amplitudeω d that satisfies the momentum limits of all the reaction wheels in the
system, is the smallest of all the ω d i :

E.16 { }ω ωd i di= Min

In the special case, where the initial system momentum H0 is along the slew axis $e , E.13 for all the
reaction wheels, simply reduce to:

    ( ) ( ) ( )− + ≤ ≤ +h A H A I e f t h A Hb
w

i b
w

i s d b
w

ilim lim
$ $ $ ( ) $

0 0    ω

which has constant bounds so that the maximum rate magnitude is easily obtained in this case.

Derivation of the maximum acceleration magnitude

The wheel torque required to carrying out the desired motion is obtained by taking the derivative of
E.10, which gives:

E.17        [ ]d
dt

h A t R t H I
d
dt

tw b
w

s= −



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$ ( ) ( ) ( )ω ω0

Where the square brackets denote the matrix corresponding to the cross product operator, i.e.
[ ]a b a b= × .

With E.1 and E.3, E.17 can be rewritten in terms of slew parameters as:

E.18 [ ]d
dt

h A e R t H f t A I e d
dt

f tw d b
w

d b
w

s= −ω α$ $ ( ) ( ) $ $ ( )0

Using the same convention as in the above section in expressing components related to a reaction
wheel, the following inequality is obtained when applying the torque limits to the ith reaction wheel:

E.19 ( ) [ ] ( )− ≤ = − ≤τ ω α τlim lim
$ $ ( ) ( ) $ $ ( )  d

dt
h A e R t H f t A I e d

dt
f twi d b

w

i di b
w

i s0

The index i appears in α di to indicate that the derived parameter in this case is the maximum
allowable acceleration due to the ith wheel. Rearranging E.19 leads to the following upper and lower
bounds on the component of the spacecraft acceleration along the ith wheel axis, due to the torque
limits on that wheel:
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E.20 ( ) [ ] ( ) ( ) [ ]− ≤ ≤ +τ ω α τ ωlim lim
$ $ ( ) ( ) $ $ ( ) $ $ ( ) ( )+ d b

w
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w
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A e R t H f t A I e d
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f t A e R t H f t0 0

At this point, an approach similar to what was used previously to derive the maximum rate
magnitude, can be used to obtain an legitimate maximum value for the acceleration profile. This
involves obtaining the global bounds for the time-dependent term in E.20, which is the gyroscopic
effect term, over the slew period, and taking the minimum of the norm of the two bounds as the
maximum allowable acceleration by the ith wheel. The desired acceleration magnitude is simply the
minimum of these maximum allowable acceleration values over all wheels, i.e.
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and { }α αd i di=Min .

This is an admissible solution because as the acceleration profile, which is a function of the
derivative of function f(t) given in E.2, changes sign from positive to negative in the course of the
slew, the norm of the smaller bound will ensure that the acceleration profile will not exceed torque
limit of the ith wheel. By taking the minimum over these smaller bounds of all the reaction wheels,
the acceleration profile will be within all the wheel torque limits. Although it produces a legitimate
solution for the maximum acceleration magnitude, and is actually quite easy to implement, this
approach in general results in sub-optimum acceleration profile.

An approach, which yields an optimum solution for the maximum acceleration amplitude, derives
the maximum acceleration values for the positive and negative regions of the acceleration profile
separately, and selects the minimum of the two as the solution. This approach turns out to be more
complicated to implement since it requires an iterative method for finding roots of an equation
involving transcendental functions.

The inequality given by E.20 when applied to the positive region of the acceleration profile reduces
to:
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By evaluating the above inequality at time ∆ ta the following inequality is obtained:

E.22 ( )
( ) [ ]

( )α τ ω
di

b
w

i s

d b
w

i a

b
w

i sA I e

A e R t H

A I e
(+)  ≤ +lim

$ $

$ $ ( )
$ $

1
2 0∆



9

This inequality contains two unknown parameters, α di(+) and ∆ ta, which, when obtained by solving
the equation part of E.22, are the optimum allowable acceleration and the shortest time to reach the
maximum rate magnitude, satisfying the system torque constraints and relations in E.5 for the ith
wheel in the positive acceleration region. Although it is possible for the equation in E.22 to have
more than one set of solutions, the set which is the desired solution has the largest α di(+) and
smallest ∆ ta.

Using E.8, the equation part of E.22 can be rewritten in terms of just one variable, the slew angle
∆ θ i evaluated at ∆ ta , for the ith wheel:
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By using the slew coordinate frame defined in the previous section, E.23 can be simplified to the
following form:

E.24
A B C

a
a∆

∆
θ

θ φ  = + +sin( )

Where ∆ θa ≡  ∆ θ i(∆ ta) is the slew angle at which the acceleration profile attains its positive maximum
magnitude α d  and the rate profile attains half of its maximum magnitude ω d . A, B, C, and φ are
constants corresponding to terms in E.23, i.e.

           A d= 3
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With S1(⋅) and S2(⋅) are scalar functions given in terms of specified parameters, with S1 assumed
values between (-1,1), which limits the possible size of C. The terms of E.24 can be visualized as
follows: B is the maximum possible acceleration that the ith wheel can provide along the slew
rotation axis $e . The term )sin( φθ +∆ aC is the acceleration required to commutate the system
momentum through the wheels as the slew progresses. The left-hand side of E.24 is the remaining
acceleration available to slew the body.

Although E.24 can not be solved analytically for ∆ θa , some simple iterative search methods can be
devised for finding the smallest root, which corresponds to the desired (minimum slew time)
solution.
One adequate search technique to find the first root is to start at the top left of the region, which
corresponds to the zero angle and acceleration (B+|C|). The angle corresponding to this point using

the left-hand side of E.24, i.e. θ0 =
+
A

B C
, should be within the bounded region and on the left of

the first root.  Starting with this angle, by stepping in an adequately small increment along the curve
of the left-hand side of E.24, the interval, which contains the solution, can be determined. The
following iteration method can be shown to yield the desired solution within this interval:
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However, at any point in the above process, if an angle θ θi > max , where θ max is the angle defines
the boundary of the first quadrant of the total slew angle, the maximum rate magnitude must be
decreased, according to E.7, to give a smaller A that will permit the above process to continue. This
rate reduction is simply to adjust the desired motion profile so that available reaction wheel torque in
the system can allow the motion to accelerate to the maximum rate within the time constraint to
have a dead band in the acceleration profile.

The same method described above can be applied to the negative region of the acceleration profile
to obtain the desired solution for the negative region. The equivalent equation to E.23 for the
negative region of the acceleration profile is the following:
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Having obtained the maximum allowable acceleration values for each of the reaction wheels in the
positive, α di(+), and negative, α di(− ), regions, the maximum acceleration magnitude is the minimum
value taken over all these values, i.e.

{ }α α αd i di di= Min ( ), ( )− +

In the special case, where the initial system momentum H0 is along the slew axis $e , and for wheel ith

which has term ( )$ $A I eb
w

i s  non-zero, the properly modified version of E.23 and E.27 leads to the

following solution:
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ω d and α d computed from the above formulation based on reaction wheel configuration, momentum
and torque limits, and slew command, completely define the desired slew trajectory.
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